Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Environ Pollut ; 347: 123701, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432345

RESUMO

Plastic degradation and the resultant production of microplastics has an important effect on the environment and fauna across the world. This paper shows that the colourant incorporated into plastic formulations has a significant effect on the stability of plastics. A static experimental exposure of differently coloured polypropylene bottle tops from the same manufacturer to a moderate climate over 3 years showed that black, white and silver plastics were almost unaffected whereas the specific blue, green and especially red pigments used in this study were significantly degraded. The second part of the study collected littered HDPE plastic containers from a remote South African beach and analysed their condition as a function of the given manufacturing date stamp. Most items were black or white and samples up to 45 years old were found with relatively little environmental degradation other than mild abrasion. It appears that carbon and titanium dioxide colourants protect the HDPE polymer from photolytic degradation. While anthraquinone, phthalocyanine and diketopyrrolopyrrole pigments were found to enable UV light to degrade the polymer leading to brittle plastics, promoting the formation of microplastics, it is likely that other pigments that do not strongly absorb in the UV will result in similar degradation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polietileno/análise , Polipropilenos/análise , Prata/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Water Res ; 254: 121397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461599

RESUMO

Municipal wastewater treatment plants (WWTPs) play a crucial role in the collection and redistribution of plastic particles from both households and industries, contributing to their presence in the environment. Previous studies investigating the levels of plastics in WWTPs, and their removal rates have primarily focused on polymer type, size, shape, colour, and particle count, while comprehensive understanding of the mass concentration of plastic particles, particularly those <1 µm (nanoplastics), remains unclear and lacking. In this study, pyrolysis gas chromatography-mass spectrometry was used to simultaneously determine the mass concentration of nine selected polymers (i.e., polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), nylon 6, nylon 66, polyvinylchloride (PVC), poly(methyl methacrylate) (PMMA) and polycarbonate (PC)) below 1 µm in size across the treatment processes or stages of three WWTPs in Australia. All the targeted nanoplastics were detected at concentrations between 0.04 and 7.3 µg/L. Nylon 66 (0.2-7.3 µg/L), PE (0.1-6.6 µg/L), PP (0.1-4.5 µg/L), Nylon 6 (0.1-3.6 µg/L) and PET (0.1-2.2 µg/L), were the predominant polymers in the samples. The mass concentration of the total nanoplastics decreased from 27.7, 18 and 9.1 µg/L in the influent to 1, 1.4 and 0.8 µg/L in the effluent, with approximate removal rates of 96 %, 92 % and 91 % in plants A, B and C, respectively. Based on annual wastewater effluent discharge, it is estimated that approximately 24, 2 and 0.7 kg of nanoplastics are released into the environment per year for WWTPs A, B and C, respectively. This study investigated the mass concentrations and removal rates of nanoplastics with a size range of 0.01-1 µm in wastewater, providing important insight into the pollution levels and distribution patterns of nanoplastics in Australian WWTPs.


Assuntos
Caprolactama/análogos & derivados , Polímeros , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Microplásticos , Nylons , Pirólise , Cromatografia Gasosa-Espectrometria de Massas , Austrália , Plásticos/análise , Polipropilenos/análise , Polimetil Metacrilato , Polietilenos , Poluentes Químicos da Água/química , Monitoramento Ambiental
3.
Environ Sci Technol ; 58(12): 5461-5471, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489752

RESUMO

Floating microplastics are susceptible to sunlight-driven photodegradation, which can convert plastic carbon to dissolved organic carbon (DOC) and can facilitate microplastic fragmentation by mechanical forces. To understand the photochemical fate of sub-millimeter buoyant plastics, ∼0.6 mm polypropylene microplastics were photodegraded while tracking plastic mass, carbon, and particle size distributions. Plastic mass loss and carbon loss followed linear kinetics. At most time points DOC accumulation accounted for under 50% of the total plastic carbon lost. DOC accumulation followed sigmoidal kinetics, not the exponential kinetics previously reported for shorter irradiations. Thus, we suggest that estimates of plastic lifespan based on exponential DOC accumulation are inaccurate. Instead, linear plastic-C mass and plastic mass loss kinetics should be used, and these methods result in longer estimates of photochemical lifetimes for plastics in surface waters. Scanning electron microscopy revealed that photoirradiation produced two distinct patterns of cracking on the particles. However, size distribution analyses indicated that fragmentation was minimal. Instead, the initial population of microplastics shrank in size during irradiations, indicating photoirradiation in tranquil waters (i.e., without mechanical forcing) dissolved sub-millimeter plastics without fragmentation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Polipropilenos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Luz Solar , Carbono , Monitoramento Ambiental
4.
Mar Pollut Bull ; 200: 116144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340376

RESUMO

Microplastics (MPs) were investigated at 19 sandy beaches along the eastern Mediterranean Moroccan coast. Sediment samples (5 mm-63 µm) were analyzed to identify MPs abundance, size, shape, color and nature. MPs concentration ranged from 40 ± 7.4 to 230 ± 48.6 MPs kg-1; fibrous MPs were the most abundant (74.72 %), followed by fragments (20.26 %), films (3.27 %), pellets (1.42 %) and foams (0.33 %). Large MPs (1-5 mm) accounted for 58 %, while small (< 1 mm) for 42 %. The 1-2 mm fraction of sediments presented the greatest amounts (30.67 %) of MPs. Transparent (50 %) and blue (17 %) were most common colors and most of particles were angular and irregularly shaped. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that PE (Polyethylene), PS (Polystyrene) and PP (Polypropylene) and PVC (Polyvinyl chloride) were the most common polymers. These findings revealed a moderate level of microplastic pollution along the beaches of the eastern Moroccan Mediterranean coast.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos/análise , Sedimentos Geológicos/análise
5.
Environ Pollut ; 346: 123543, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367691

RESUMO

The study focused on detecting and characterizing microplastics in outdoor and indoor air in Ranchi, Jharkhand, India during post-monsoon (2022) and winter (2023). Stereo microscopic analysis showed that plastic fibres had a dominant presence, fragments were less abundant, whereas fewer films could be detected in indoor and outdoor air. The atmospheric deposition of microplastics outdoors observed 465 ± 27 particles/m2/day in PM10 and 12104 ± 665 and 13833 ± 1152 particles/m2/day in PM2.5 in quartz and PTFE, respectively during the post-monsoon months. During winter, microplastic deposition rates in PM10 samples were found to be 689 ± 52 particles/m2/day and 19789 ± 2957 and 30087 ± 13402 in quartz and PTFE particles/m2/day respectively in PM2.5. The mean deposition rate in indoor environment during post-monsoon was 8.3 × 104 and 1.03 × 105 particles/m2/day in winter. During the post-monsoon period in PM10, there were fibres from 7.7 to 40 µm and fragments from 2.3 µm to 8.6 µm. Indoor atmospheric microplastics, fibres ranged from 1.2 to 47 µm and fragments from 0.9 to 16 µm present respectively during the post-monsoon season. Fibres and fragment sizes witnessed during winter were 3.6-6.9 µm and 2.3-34 µm, respectively. Indoor air films measured in the range of 4.1-9.6 µm. Fourier transform infrared analysis showed that outdoor air contained polyethylene, polypropylene, Polystyrene, whereas indoor air had polyvinyl chloride. Polyethylene mainly was present in outdoor air, with lesser polypropylene and polystyrene than indoors, where polyvinyl chloride and polyethylene were in dominant proportions. Elemental mapping of outdoor and indoor air samples showed the presence of elements on the microplastics. The HYSPLIT models suggest that the particles predominantly were coming from North-West during the post-monsoon season. Principal component analysis indicated wind speed and direction influencing the abundance of microplastics. Microplastics concentration showed strong seasonal influence and potential to act as reservoir of contaminants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Microplásticos/análise , Plásticos/análise , Monitoramento Ambiental , Polipropilenos/análise , Poliestirenos/análise , Cloreto de Polivinila/análise , Quartzo , Índia , Polietileno/análise , Material Particulado/análise , Politetrafluoretileno
6.
Sci Total Environ ; 916: 170215, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262536

RESUMO

Biosolids are considered a potentially major input of microplastics (MPs) to agricultural soils. Our study aims to identify the polymeric origin of MPs extracted from biosolid samples by comparing their Attenuated Total Reflection (ATR) - Fourier-transform infrared (FTIR) spectra with the corresponding near-infrared (NIR) spectra. The reflectance spectra were preprocessed by Savitzky-Golay (SG), first derivative (FD) and compared with analogous spectra acquired on a set of fifty-two selected commercial plastic (SCP) materials collected from readily available products. According to the results portrayed in radar chart and built from both ATR-FTIR and NIR spectral datasets, the MPs showed high correlations with polymers such as polyethylene (LDPE, HDPE), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP) and polyamide (PA), determined in SCP samples. Each unknown MP sample had on average three or more links to several types of SCP, according to the correlation coefficients for each polymer ranging from 0.7 up to 1. The comparison analysis classified the majority of MPs as composed mainly by LDPE/HDPE, according to the top correlation coefficients (r > 0.90). PP and PET were better identified with NIR than ATR-FTIR. In contrast to ATR-FTIR analysis, NIR was unable to identify PS. Based on these results, the primary sources of MPs in the biosolids could be identified as discarded consumer packaging (containers, bags, bottles) and fibers from laundry, disposable glove, and cleaning cloth. SYNOPSIS: Microplastics (MPs) are considered contaminants of emerging concern. This study compares two simple and fast spectroscopy techniques to identify microplastics in the biosolid matrix.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Biossólidos , Polietileno/análise , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Polímeros , Poliestirenos/análise , Polipropilenos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
7.
Forensic Sci Int ; 354: 111914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154427

RESUMO

A comprehensive investigation into the impact of the physical and chemical variables of a substrate on the deposition was conducted to aid in the estimation of the subsequent transfer probabilities of blood and semen. The study focussed on surface roughness, topography, surface free energy (SFE), wettability, and the capacity for protein adsorption. Conjointly, evaluations of the physical and chemical characteristics of blood and seminal deposits were conducted, to assess the fluid dynamics of these non-Newtonian fluids and their adhesion potential to aluminium and polypropylene. A linear range of surface roughness parameters (0.5 - 3.5 µm) were assessed for their impact on the deposit deposition spread and adhesion height, to gather insight into the change in fluid dynamics of non-Newtonian fluids. Blood has shown to produce a uniform adhesion coverage on aluminium across all roughness categories while blood deposited on polypropylene exhibited a strong hydrophobic response from a surface roughness of 2.0 µm and beyond. Interestingly, the deposition height of blood resulted in near identical values, whether deposited onto the hydrophobic polypropylene or the hydrophilic aluminium substrate, illustrating the potential influence of a heightened fibrinogen adsorption effect. Semen deposited on aluminium resulted in concentrated localised deposition regions after reaching a surface roughness of 2.0 µm, highlighting the development of crystal formations afforded by the sodium ion concentration in the seminal fluid. The semen deposited on polypropylene conformed to the substrate contours producing a deposition film that was smoother than the substrate itself, underlining the effects of thixotropic fluid dynamics. Variables identified here establish the complexity observed for non-Newtonian fluids, and the effect protein adsorption may have on the deposition behaviour of blood and seminal deposits and inform questions in relation to the adhesion strength of said deposits and their ability to dislodge (becoming detached upon the application of an external force) from the substrate surface during a potential transfer event.


Assuntos
Líquidos Corporais , Polipropilenos , Propriedades de Superfície , Polipropilenos/análise , Alumínio/análise , Molhabilidade , Líquidos Corporais/química
8.
Water Sci Technol ; 88(11): 2996-3008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096084

RESUMO

Microplastic (MP) pollution is a growing concern and various methods are being sought to alleviate the level of pollution worldwide. This study investigates the biodegradation capacity of MPs by indigenous microorganisms of raw water from Tehran drinking water treatment plants. By exposing polypropylene (PP) and polyethylene (PE) MPs to selected microbial colonies, structural, morphological, and chemical changes were detected by scanning electron microscope (SEM), cell weight measurement, Fourier transform infrared (FTIR), Raman spectroscopy test, and thermal gravimetric analysis (TGA). Selected bacterial strains include Pseudomonas protegens strain (A), Bacillus cereus strain (B), and Pseudomonas protegens strain (C). SEM analysis showed roughness and cracks on PP MPs exposed to strains A and C. However, PE MPs exposed to strain B faced limited degradation. In samples related to strain A, the Raman spectrum was completely changed, and a new chemical structure was created. Both TGA and FTIR analysis confirmed changes detected by Raman analysis of PP and PE MPs in chemical changes in this study. The results of cell dry weight loss for microbial strains A, B, and C were 13.5, 38.6, and 25.6%, respectively. Moreover, MPs weight loss was recorded at 32.6% for PP MPs with strain A, 13.3% for PE MPs with strain B, and 25.6% for PP MPs with strain C.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Irã (Geográfico) , Plásticos/análise , Polietileno/análise , Polipropilenos/análise , Poluentes Químicos da Água/análise
9.
Chemosphere ; 343: 140106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689148

RESUMO

Human exposure to micro (nano)plastics (MNPLs) has become a significant concern as a potential health threat. Exposure routes include ingestion, inhalation, and dermal contact, being food and drinking water the primary sources of oral exposure. Here we present the quantification of polymers of MNPLs particles from 700 nm to 20 µm in bottled water commercialised in Spain, including an estimation of the potential risk for daily consumers. We evaluated samples from 20 popular brands in 0.5 and 1.5 L plastic bottles. A double-suspect screening approach developed and validated in our research group for drinking water was adapted for bottled water samples. The identification and quantification of MNPLs-polymers in mass units and the tentative identification of plastic additives (PA) until the second level of confidence was carried out based on high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS). The results showed the presence of polypropylene (PP), polyethylene (PE) and polypropylene terephthalate (PET) in the samples. Among them, PE was the most frequently detected and quantified polymer (55% of samples) followed by PET which was detected in 33% of the samples and showing the highest concentration (4700 ng L-1). The median value of the sum of polymer concentrations was 359 ng L-1. In addition, 28 plastic additives were detected, where at least one of them was present in 100% of the samples. Stabilizers and plasticisers were the most frequently identified. A prioritisation study was performed using a multi-QSAR modelling software, where bis(2-ethylhexyl) adipate and bis(2-ethylhexyl) phthalate were estimated as the most potentially harmful compounds for human health. Overall, findings suggest that bottled water is a non-negligible route to exposure to MNPLs.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Água Potável/química , Polipropilenos/análise , Polímeros/química , Polietileno/análise , Espanha , Plásticos/química , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 896: 166223, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37586531

RESUMO

Marine debris pollution poses a significant global threat to biodiversity, with plastics being the primary debris type found in oceans due to their low-cost production and high demand worldwide. Microplastics (MPs, <5 mm in size) are highly bioavailable to a wide range of marine taxa, including marine mammals, through direct and indirect ingestion routes (i.e., trophic transfer). Recently, MP pollution has been detected on the Galapagos Marine Reserve, so in this study we developed a baseline framework for MP pollution in the Galapagos sea lion (GSL, Zalophus wollebaeki) through scat-based analysis. We collected 180 GSL scat samples from the southeast region following strict quality assurance/quality control protocols to detect, quantify and characterize physical-chemical properties of MPs through visual observations and µFT-IR spectroscopy. We recovered 81 MPs of varying sizes and colors in 37 % of samples (n = 66/180), consisting mostly of fibers (69 %, x¯ = 0.31 ± 0.57 particles scat-1). The number of particles per gram of sample wet weight ranged from 0.02 to 0.22 (x¯ = 0.04 ± 0.05 particles scat wet g-1). El Malecón and Punta Pitt rookeries at San Cristobal Island had the highest number of MPs (x¯ = 0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, respectively), and blue-colored particles were the most common in all samples. We identified eleven polymers in 46 particles, consisting mostly of polypropylene-polyethylene copolymer, polypropylene, cellulose, polyethylene, and polyvinyl chloride. The textile, fishing, and packaging industries are likely significant sources of microfibers into this insular ecosystem. Our results suggest that the GSL is exposed to MPs due to anthropogenic contamination that is subsequently transferred through trophic processes. These findings provide an important baseline framework and insights for future research on MP pollution in the region, as well as for management actions that will contribute to the long-term conservation of the GSL.


Assuntos
Leões-Marinhos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Polipropilenos/análise , Polímeros , Polietilenos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
11.
Water Res ; 243: 120385, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499539

RESUMO

The issue of airborne microplastics (AMPs) pollution is receiving increasing attention, but effective solutions are still limited. In this study, AMPs were collected in pairs from an open space and under a tree (Ficus virens) in the suburb of Chengdu, southwest China, to investigate the current pollution status. The meteorological factors and underlying surface types were analyzed to investigate whether these factors could influence and mitigate the pollution of AMPs. The results showed that the fibrous AMPs accounted for the vast majority and the dominant polymers were polypropylene-polyethylene (PP-PE) and polypropylene (PP), with an average deposition flux of AMPs of 192 n/m2/d (22.41 µg/m2/d). Rainfall was found to have the prolonged scavenging efficiency for AMPs, which could extend to 8 to 48 hours after the end of rainfall, and this is a new insight into the relationship with meteorological factors. Interactions between the key underlying surface types and AMPs were also studied. The representative tree species (Ficus virens) had a low interception rate of 6.25% for AMPs and retained mainly small-sized AMPs and more fibers. The masses of AMPs loaded into Chengdu rivers could reach 1149 kg annually, with the unit mass load of 13.6 kg/km2 in urban rivers and 8.2 kg/km2 in suburban rivers. The masses intercepted by trees and bushes throughout the city only offset the masses loading in rivers, and open or sparse buildings were found to be sensitive areas for AMPs, which indicated the urgent need to control and mitigate the pollution of AMPs, especially in these sensitive areas. This work comprehensively analyzed the AMPs pollution from various perspectives and attempted to find ways to mitigate this pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polipropilenos/análise , Monitoramento Ambiental , China , Rios , Poluentes Químicos da Água/análise
12.
Arch Environ Contam Toxicol ; 85(1): 25-33, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37284885

RESUMO

Mangroves constitute a unique and important type of coastal wetlands in tropical and subtropical zones worldwide. The abundance of microplastics (MPs) in the mangrove sediments is poorly understood. This study aimed to quantify the role of mangrove root systems in effectively entrapping MPs in the mangrove areas of Tuticorin and Punnakayal Estuary. It investigated the abundance, characteristics, and weathering patterns of MPs in different mangrove sediments. Sediment samples were collected from ten mangrove sites and two control sites without mangroves. Microplastics were extracted from mangrove sediments by density separation method, and then counted and categorized according to their shape, size, and colour. Microplastics were identified in all ten sampling sites. Punnakayal Estuary has a greater MPs concentration (27 ± 2.65 items/kg dw) than Tuticorin (9.33 ± 2.52 items/kg dw). Also, microplastic concentrations are higher in the mangrove sites than in the control sites. Most MPs are fibres with size ranges of 1-2 mm and 2-3 mm dominating. Blue and transparent are the predominant colours. Four polymers were identified, namely polyethylene (PE), polypropylene (PP), polymethyl methaacrylate (PMMA), and polyurethane (PUR). The degree of weathering was confirmed by carbonyl index and the values vary between 0.28 and 1.25 for PE and 0.6 and 1.05 for PP.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise , Polietileno/análise , Índia , Sedimentos Geológicos
13.
J Environ Manage ; 344: 118472, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384995

RESUMO

Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos , Estuários , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise
14.
Mar Pollut Bull ; 193: 115109, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327719

RESUMO

We report the distribution of floating plastics in the eastern and southern sectors of the Atlantic Ocean based on 35 neuston net trawl samples collected during two research cruises in 2016 and 2017. Plastic particles (>200 µm) were found in 69% of net tows, with median densities of 1583 items·km-2 and 5.1 g·km-2. Most particles (80% of 158) were microplastics (<5 mm) of secondary origin (88%), followed by industrial pellets (5%), thin plastic films (4%) and lines/filaments (3%). Due to the large mesh size we used, textile fibers were not considered in this study. µFTIR analysis revealed that most particles found in the net were made of polyethylene (63%), followed by polypropylene (32%) and polystyrene (1%). A transect between 0 and 18°E along 35°S in the South Atlantic Ocean revealed higher densities farther west, supporting the accumulation of floating plastics in the South Atlantic gyre, mainly west of 10°E.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Monitoramento Ambiental , Microplásticos , Oceano Atlântico , Polipropilenos/análise , Poluentes Químicos da Água/análise
15.
J Contam Hydrol ; 257: 104215, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348415

RESUMO

Microplastics (MPs) defined as smaller 5 mm plastic particles have received increasing attention due to their global occurrence and potential toxicity. This study investigated the effects of environmental factors (rainfall intensity, 13 and 29 mm/h) and MP characteristics (morphology (fiber, flake, and film), polymer type (polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS)) and size (100-300, 300-500, and 500-1000 µm)) on the vertical transport of MP in unsaturated soil conditions using lab-scale column experiments. Additionally, the occurrence and characteristics of MP detected in soil/sediment (total 13 samples) and groundwater samples (total 6 samples) were explored in the field study. Laboratory-scale column experiments revealed that heavy rainfall intensity (29 mm/h) increased the degree of MP vertical transport in unsaturated soil conditions and MP fibers showed the greatest vertical mobility among the various morphologies of MPs assessed. For the polymer type and size, the lighter PP polymer or the larger size of MP (500-1000 µm) showed higher mobility. In the field study, a statistical difference in MP abundance was observed depending on the population density and degree of urban development in both soil and groundwater samples. Comparing to the two different types of environmental media samples obtained from the same site, there was a significant difference in the composition of polymer types present while statistically no difference in MP abundance was observed between the two media samples (i.e., soil or sediment and groundwater). In addition, MP fibers and polyethylene (PE) were predominantly detected in our two study areas. These results suggest that various types of MP can pass through the unsaturated zone by water infiltration, even if it takes a long time to reach groundwater. Overall, we found that the degree of vertical transport of the MPs was highly sensitive to environmental conditions and MP characteristics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Polipropilenos/análise , Solo , Monitoramento Ambiental
16.
Mar Environ Res ; 188: 105992, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37094527

RESUMO

Offshore areas are particularly important in recognizing microplastics pollution because they are sinks of land imports and sources of ocean microplastics. This study investigated the pollution and distribution of microplastics in the offshore Sea, rivers and wastewater treatment plants (WWTPs) in Jiangsu coastal area in China. Results showed that microplastics were widely present in the offshore area, with an average abundance of 3.1-3.5 items/m3. Significantly higher abundance was present in rivers (3.7-5.9 item/m3), municipal WWTPs (13.7 ± 0.5 item/m3), and industrial WWTPs (19.7 ± 1.2 item/m3). The proportion of small-sized microplastics (1-3 mm) increased from WWTPs (53%) to rivers (64%) and the offshore area (53%). Polyamide (PA), polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), and rayon (RA) were dominant types of microplastics. Both living and industrial sources contributed to the prevalent microplastics in the offshore Sea. Redundancy analysis showed that small-sized microplastics (1-3 mm) were positively correlated to total phosphorus (TP), while large-sized microplastics (3-5 mm) were positively correlated to TP and NH3-N. The abundance of PE, PP and PVC microplastics were positively correlated to TP and total nitrogen (TN), thus nutrients could be indicators of microplastics pollution in the offshore area.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Rios , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise , China , Polietileno/análise
17.
Chemosphere ; 331: 138794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116724

RESUMO

Fragmentation of degraded plastics and release of smaller secondary microplastics is usually attributed to the growth of environmental stress cracks. Analysis of crack patterns derived from chemical degradation can be useful not only for assessing the cause of plastic fracture and evaluating the useful lifetime of a product, but it can also potentially provide valuable information on the generation of microplastics. However, the literature with respect to microplastics generation is generally limited to surface observations of polypropylene and polyethylene. Here, we used ion-beam milling to prepare cross-sections of fragments of 15 plastic products made from five commodity plastics (polypropylene, polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) that were collected at two beaches in Japan, and then we examined the microstructures of those cross-sections by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Crack growth in the depth direction was examined to provide insights into microplastic generation behavior. In all of the polypropylene samples, and some of the low-density polyethylene and polystyrene samples, cracks with a depth exceeding 100 µm from the sample surface were observed. Considering that crack growth causes fracture of degraded plastic and microplastic release, these observations suggest the release of sharp-edged microplastics from the crack fracture surface. In contrast, in the high-density polyethylene and polyvinyl chloride samples, crack growth was limited to within 20 µm of the sample surface, suggesting the release of irregularly shaped microplastics and additive particles. The present results suggest that the degradation behavior of plastic products in the depth direction is dependent on the type of plastic.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/química , Microplásticos , Polipropilenos/análise , Poliestirenos/análise , Estudos Transversais , Cloreto de Polivinila/análise , Monitoramento Ambiental/métodos , Polietileno/química , Poluentes Químicos da Água/análise
18.
Mar Pollut Bull ; 190: 114895, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011539

RESUMO

The effects grain size on transport and retention of plastics in sediments are controversial issue. Four beaches were selected on the Bodrum Peninsula (SW Türkiye) for this study. Twenty-four samples with poorly to well sorted, sandy gravel, gravel, or gravelly sand were collected from the top five cm of the sampling quadrant's four corners and center of 1 m2 area, from shoreline and backshore. The highest plastic content (38 mesoplastics/600 g - 455 microplastics (MPs)/1200 g) was determined on the Bodrum Coast having the highest population. Polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and polyurethane (PU) were predominantly detected with Fourier Transform Infrared Spectroscopy (FTIR) analysis as MPs as a fragment and fiber. This study indicates the negative correlation between grain size and the number of MPs in coastal sediments. Anthropogenic activities are evaluated as a possible primary source of plastic pollution in the study area.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Microplásticos/análise , Polipropilenos/análise , Areia , Sedimentos Geológicos/análise
19.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010423

RESUMO

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Microplásticos , Polietileno/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos/análise
20.
J Sci Food Agric ; 103(3): 1127-1138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36085567

RESUMO

BACKGROUND: EU policies towards a circular economy address plastic packaging as one of the significant concerns and sets ambitious recycling targets. Polyolefins (POs) cannot be recycled for food contact using conventional polyethylene terephthalate (PET) recycling approaches. Thermal degradation prevents the use of high temperatures and, consequently, decontamination of POs may be insufficient when using lower temperatures. Polypropylene (PP) beverage cups were decontaminated using supercritical fluid extraction with carbon dioxide (scCO2 ). Decontamination efficiencies (DEs) of selected markers were determined in challenge tests following European Food Safety Authority guidelines. The effects of time (10-60 min) for PET, polylactic acid (PLA), and PP and temperature (60-80 °C) for PP were studied at constant pressure. The physical properties, sensorial properties, and overall migration of treated scCO2 PP were analysed and compared with virgin PP. RESULTS: PP showed the highest average DE, and PET the lowest, for all the surrogates and in all time conditions. A relative increase in the DE with the increase in process time, particularly for PET and to some extent for PLA, was seen. For PP, no significant impact of time and temperature was observed under the conditions tested. The DE of volatile surrogates was higher than that of semi-volatiles. Results indicate that the scCO2 treatment did not affect the physical and sensorial properties, nor the overall migration of PP, although it contributes to a considerable reduction in extractable n < C24 alkanes. CONCLUSIONS: Results indicate that scCO2 can be used to decontaminate post-consumption PP beverage cups with higher DEs than those for PET and PLA, applying mild processing conditions. © 2022 Society of Chemical Industry.


Assuntos
Polietilenotereftalatos , Polipropilenos , Polipropilenos/análise , Polietilenotereftalatos/análise , Dióxido de Carbono , Bebidas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...